An interpolation method for the reconstruction and recognition of face images
نویسندگان
چکیده
An interpolation method is presented for the reconstruction and recognition of human face images. Basic ingredients include an optimal basis set defining a low-dimensional face space and a set of “best interpolation pixels” capturing the most relevant characteristics of known faces. The best interpolation pixels are chosen as points of the pixel grid so as to best interpolate the set of known face images. These pixels are then used in a least-squares interpolation procedure to determine interpolant components of a face image very inexpensively, thereby providing efficient reconstruction of faces. In addition, the method allows a fully automatic computer system to be developed for the real-time recognition of faces. Two significant advantages of this method are: (1) the computational cost of recognizing a new face is independent of the size of the pixel grid; and (2) it allows for the reconstruction and recognition of incomplete images.
منابع مشابه
مدلسازی چهره با استفاده از میانگینگیری بر پایه دگردیسی تصویر و تجزیه مرتبه پایین
In video surveillance, the viewing angle of face with respect to camera, called angular occlusion (also referred to as head pose) will limit system’s ability in face recognition. In this paper, a method for angular occlusion elimination in face images is proposed, which is based on image morphing. The proposed method models a frontal face from a batch of images with different head poses b...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کامل